Genome Editing in Agriculture and Food Systems in The Netherlands

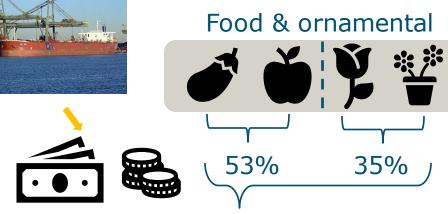
Genome Editing in Agriculture and Food Systems in The Netherlands

Brussels, May 23rd-24th, Gijs Kleter* (WFSR)

Schedule

- Netherlands as agri-food hub & portal
- Breeding ecosystem
- Companies' stance
- Governmental initiatives
- Public perception
- Conclusions

Netherlands: agri-food trade hub


Image source: Bing (CC-BY), WUR

Horticulture: Dutch top sector

Cultivation, greenhouse construction, breeding, trade, etc.

R&D spending \in 765 Million $\sim^2/_3$ breeders and wholesales (2017)

Export volume €24.5 billion ~6,000 exporters, ~¾ Dutch make (2019)

Data source: <u>CBS (2020)</u> Images: Bing (CC-BY)

Dutch plant breeding ecosystem

"Plant source materials"

- ~300 companies, ~€3 Bn exports
- ~2,000 new plant variety registrations / year
- NLD home to largest vegetable breeders
 - Multinationals: Monsanto, Bayer, Syngenta, BASF, etc.
 - Family businesses: Enza, Rijk Zwaan, Bejo, Bakker, etc.
 - Affiliations of JPN corps.: Takii, Sakata
- "Seed Valley"
- Transdisciplinary academic & contract research
 - E.g., Wageningen UR, spin-offs
 - Funding: Applied, public-private, fundamental

Data: <u>SEO report</u>, Plantum, HollandBio

Dutch government initiatives on new plant breeding techniques

2013: Summoned by Parliament to make the case in Brussels for exemption of cisgenesis from the scope of GMO legislation

- 2017: Dutch ministries propose the exemption of techniques that do not ultimately introduce foreign DNA into the plants
- 2017: The new government's accord explicitly states it will make the case for application and authorization of new techniques such as CRISPR Cas
- 2018: Dutch minister of Agriculture pleads for relaxation of rules for experimental use of genome editing (*e.g.*, for plant breeding research)

Data: <u>Dutch government</u>, Europe Seed

Dutch government initiatives on new plant breeding techniques

Ministry of Infrastructure and Water Management:

- Advocacy of the Safe-by-Design approach to be applied to biotechnology
 - Part of broader initiative on chemical and nanomaterials safety
 - Pursued within OECD, amongst others
 - "Safe(r) innovation approach"
 - *E.g.*, agreement with tyre industry

Anticipate potential safety issues at an early stage

Dutch plant breeding sector position on "genome editing

- Position papers for roundtable discussions with govt.
 - For example, ENZA, Rijk Zwaan, KWS, Plantum
- Items commonly addressed
 - Current legislation too stringent
 - Need to respond quickly to changing trends
 - Shorter generation time with CRIPSR Cas
 - Stress & disease resistance, yield, taste, etc.
 - Different uses for research and breeding
 - Level playing field internationally, enforcibility
 - Intellectual property rights, accessibility

Public research on genome editing

Scopus: 1,777 publications (2012-2023)

- Agri-food:
 - Editing of microbes (Wageningen, Delft, Utrecht, Groningen, Ede)
 - Crop genome editing (Wageningen, Amsterdam)
 - Bacteriophages (Delft)
- Medical:
 - Cancer: gene function
 - Editing of human cells, gene therapy
 - Organoids, etc., etc.
- Ethics, responsible use, society, etc.

Public research on genome editing

Examples of research on genome editing

- Wheat: altered gliadins (coeliac disease-related)
- Heat-resistant and disease-resistant crops
- Chicory: production of functional metabolite
- Off-target effects of CRISPR Cas in crops
- Microbes: production of industrial compounds
- Starter cultures (e.g., lactic acid bacteria)
- Societal issues, e.g. consumer acceptance
- Future of crop breeding research (roadmap)

Dutch general public's stance on genome editing

- Various studies carried out
 - Particularly by the Rathenau institute, COGEM, etc.
 - General conclusions (genome editing of plants):
 - No broad awareness of techniques
 - Dutch citizen receptive yet critical, *i.e.*:
 - Allow it to solve societal problems
 - Avoid concentration of power
 - Require safety assessment/regulation
 - Take into account broader perspectives
 - Be transparent about uncertainties

Genome editing in other fields

Microbes

- Netherlands has a substantive fermentation industry
 - Companies interested in innovation
 - Investment by government in research into precision fermentation
- Academic research, *e.g.*, Delft, Wageningen

Animals

- Broad societal debate (2002): negative stance towards GM animals with productivity traits
- Recent call for relaxation (animal welfare reasons)

Conclusions

- The Netherlands has an important vegetable and ornamental plant breeding sector and academic community which are innovation-oriented
 - New genomic techniques to be used as research tool and/or breeding tool
- The Dutch government and authorities try to make the case for relaxation of rules for new genomic techniques
- The Dutch public is not fully aware of these techniques and is willing to accept it under a range of conditions (*e.g.*, clamp down on corporate dominance0

Thank you for your attention!

gijs.kleter@wur.nl

